EVOLUTION OF FORMATION AND CURRENT TRENDS IN THE DEVELOPMENT OF ART OBJECTS’ RESEARCH IN THE ULTRAVIOLET RANGE
DOI:
https://doi.org/10.32782/uad.2024.1.1Keywords:
ultraviolet radiation, UV light sources, UV fluorescence, UV reflectance photography, UV reflected false-colour images, art objects’ researchAbstract
Ultraviolet radiation is widely used in research and restoration for the examination of cultural heritage objects. The period from the discovery of UV rays and the phenomenon of fluorescence in the 19th century to the introduction of digital technologies and technical photography in the late 20th century is characterized by the formation of a methodology for artworks research and its further transformation. The aim of the article is to analyze the main historical stages of the formation and development of the method of art objects examination in the UV range. There was applied an integrated approach that uses general logical methods of scientific knowledge and combines general philosophical and general scientific methods and is based on the principles of historicism, general connection, and interdependence. The article first discusses the evolution of the introduction of UV radiation into research practice in the context of discoveries in the development of UV light sources and techniques for visible fluorescence imaging. Modern approaches to the application of UV radiation in the examination of paintings and graphics arts, in particular, by ultraviolet reflectography, ultraviolet-reflected falsecolour photography, and multispectral imaging have been analyzed. Prospects of the methodology development for the research of artworks aimed at improving the processes and expanding the possibilities of the practical application of ultraviolet rays are considered in this paper. It is shown that in recent years, the main attention of scientists has been focused on improving the reproducibility and standardization of UV imaging of cultural heritage objects by developing reference targets and reliable protocols for image acquisition, correction, and post-processing. The materials presented in this article could be useful for scientists and restorers for the further development and promotion of modern approaches to the application of UV radiation for the examination of cultural heritage objects.
References
Тимченко Т.Р. Експертиза творів образотворчого мистецтва: живопис (історія та методологія): навч. посіб. Київ : НАКККіМ, 2017. 120 с.
Цитович В.І. Експертиза творів образотворчого мистецтва: живопис : (методологія та практика): навч. посіб. Київ : НАКККіМ, 2018. 232 с.
Андріанова О. Технологічні дослідження в структурі мистецтвознавчої експертизи. Український мистецтвознавчий дискурс: колективна монографія / За заг. ред. д. іст. н. В.В. Карпова; НАКККІМ. Рига : Izdevnieciba «Baltija Publishing», 2020. С. 20–70.
Андріанова О.Б., Біскулова С.О., Живкова О.В., Тимченко Т.Р., Чуєва К.Є. НАука. МИстецтво. СТудії. Освіта. Технологічні дослідження творів мистецтва з колекції Музею Ханенків : методичний посібник. Київ : Видавництво «Фенікс», 2019. 40 с.
Андріанова О., Біскулова С., Перевальський В., Чуєва К., Шостак О. Технологічні дослідження творів європейської графіки з колекції музею Ханенків. НАука. МИстецтво. СТудії. Освіта. : методичний посібник. Київ : Видавництво «Фенікс», 2020. 64 с.
Marsh, G.S. The use of ultraviolet radiation in the examination of works of art, artefacts, and informational resources. ICCM Bulletin. 1978. Vol. 4(2-3). P. 29–40. DOI: 10.1179/iccm.1978.4.2-3.005.
Valeur, B., Berberan-Santos, M.N. A brief history of fluorescence and phosphorescence before the emergence of quantum theory. Journal of Chemical Education. 2011. Vol. 88(6). P. 731–738. DOI: 10.1021/ed100182h.
Hickey-Friedman, L. A review of ultra-violet light and examination techniques. Objects Specialty Group Session : Proceedings of the 30th Annual Meeting. V. Greene, & P. Griffin (Eds.). Washington DC : Objects Specialty Group of the American Institute for Conservation of Historic & Artistic Works, 2002. Vol. 9. P. 161–168.
Mairinger, F. UV-, IR- and X-ray imaging. Non-destructive micro analysis of cultural heritage materials. Janssens, K., Van Grieken, R. (Eds.). Antwerp Belgium : Elsevier Science. 2004. P. 15–71. DOI: 10.1016/s0166-526x(04)80006-0.
Mairinger, F. The ultraviolet and fluorescence study of paintings and manuscripts. Radiation in Art and Archeometry. / Eds. D.C. Creagh, D.A. Bradley. Amsterdam, The Netherlands : Elsevier Science, 2000. P. 56–75.
Buzit-Tragni, C. The Use of Ultraviolet-Induced Visible Fluorescence for Examination of Photographs. Capstone Research Project, Advanced Residency Program in Photograph Conservation, Third Cycle 2003–2005. Rochester, NY : George Eastman House, Image Permanence Institute, 2005. 115 p.
Williams, R., Williams, G. Ultraviolet, Infrared & Fluorescence Photography. Reflected Ultraviolet Photography, 2005. URL: https://www.semanticscholar.org/paper/Ultraviolet-%2C-Infrared-%26-Fluorescence-Photography-Williams/ad39e89ba3595d63eaa11f4ba437f21d95ff68fe.
Banou P., Alexopoulou A., Singer B. W. Investigation of oil binder absorption into paper support with ultraviolet-induced visible fluorescence and ultraviolet reflectance photography. e-Preservation Science Journal.2017. Vol. 14. P. 1–8.
Banou P., Alexopoulou A., Kaminari A.A. Photographic and technical examination: A valuable tool for the conservation treatment of works of art on paper and parchment. Works of art on Parchment and paper, interdisciplinary approaches / Eds. N. Golob, & J.V. Tomazic. Ljubljana : Slovenian Ministry of Culture and the Archives of the Republic of Slovenia, 2019, P. 217–225.
Eva B., Claudia C., Oliver H., Rabin Ira. Scientific investigations on paper and writing materials of Mali: A pilot study. Journal of African Studies and Development. 2019. Vol. 11(3). P. 28–50. DOI: 10.5897/jasd2017.0453.
Colini, C., Shevchuk, I., Huskin, K.A., Rabin, I., Hahn, O. A new standard protocol for identification of writing media. Exploring Written Artefacts: Objects, Methods, and Concepts / Ed. J.B. Quenzer. Berlin/Boston : De Gruyter. 2021. P. 161–182. DOI: 10.1515/9783110753301-009.
Dyer, J., Verri, G., Cupitt, J. Multispectral imaging in reflectance and photo-induced luminscence modes: A user manual. London : British Museum. 2013. 184 р.
Frercks, J., Weber, H., Wiesenfeldt, G. Reception and discovery: the nature of Johann Wilhelm Ritter’s invisible rays. Studies in History and Philosophy of Science Part A. 2009. Vol. 40(2), P. 143–156. DOI: 10.1016/j.shpsa.2009.03.014.
Sutton, M. A. Sir John Herschel and the Development of Spectroscopy in Britain. The British Journal for the History of Science. 1974. Vol. 7(01). P. 42. DOI: 10.1017/s0007087400012851.
Stokes, G.G. On the change of refrangibility of light. Philosophical transactions of the Royal Society of London. 1852. Vol.142. P. 463–562. DOI: 10.1098/rstl.1852.0022.
Rubin, M.B. The development of the mercury lamp. Bulletin for the History of Chemistry. 2010. Vol. 35(2). P. 105–110.
Schott, O. A New Ultra-Violet Mercury Lamp. Nature. 1905. Vol. 72. P. 513–514. DOI: 10.1038/072513a0.
Dupré, S., Boulboullé, J. (Eds.). Histories of Conservation and Art History in Modern Europe. New York : Routledge, 2022. 240 p.
Robbins, M. The collector’s book of fluorescent minerals. Van Nostrand Reinhold Company Inc., Springer Science & Business Media : New York. 1983. 289 p. DOI: 10.1007/978-1-4757-4792-8.
Sharma, Sh., Sharma, A. Robert Williams Wood: pioneer of invisible light. Photodermatology, photoimmunology & photomedicine. 2016. Vol. 32(2). P. 60–65.
Danckwortt, P.W. Lumineszenz-Analyse im filtrierten ultravioletten Licht: ein Hilfsbuch beim Arbeiten mit den Analysenlampen. Leipzig : Akademische Verlagsgeselschaft, 1929. 143 p.
Becker, L., Schorsch, D. The Practice of Objects Conservation in the Metropolitan Museum of Art (1870-1942). Metropolitan Museum Studies in Art, Science and Technology. 2010. Vol. 1. P. 11–37.
Rorimer, J.J. Ultra-violet rays and their use in the examination of works of art. New York : Metropolitan Museum of Art, 1931. 156 p.
Radley, J.A., Grant, J. Fluorescence Analysis in Ultra-Violet Light. London : Chapman & Hall, 1933. 219 p.
Martinez, K,, Cupitt, J., Saunders, D., Pillay, R. et al. Ten years of art imaging research. IEEE International Conference on Communications. 2002. Vol. 90(1). P. 28–41.
Garcia, J.E., Wilksch, P.A., Spring, G., Philp, P., Dyer, A. Characterization of Digital Cameras for Reflected Ultraviolet Photography; Implications for Qualitative and Quantitative Image Analysis During Forensic Examination. Journal of Forensic Sciences. 2013. Vol. 59(1). P. 117–122. DOI: 10.1111/1556-4029.12274.
Ray, S. Scientific photography and applied imaging, Boston : Focal Press, 1999. 586 p.
Cosentino, A. Practical notes on ultraviolet technical photography for art examination. Conservar Património. 2015. Vol. 21. P. 53–62. DOI: 10.14568/cp2015006.
Aldrovandi, A., Buzzegoli, E., Keller, A., Kunzelman, D. Indagini su superfici dipinte mediante immagini UV riflesse in falso colorein. OPD Restauro. 2004. Vol. 16. P. 83–87. Режим доступу: http://www.jstor.org/stable/24392513.
Liang, H. Advances in multispectral and hyperspectral imaging for archaeology and art conservation. Applied Physics A. 2012. Vol.106. P. 309–323. DOI: 10.1007/s00339-011-6689-1.
Hayem-Ghez, A., Ravaud, E., Boust, C., Bastian, G., Menu, M., & Brodie-Linder, N. Characterizing pigments with hyperspectral imaging variable false-color composites. Appl. Phys. A. 2015. Vol. 121. P. 939–947. DOI: 10.1007/s00339-015-9458-8.
Cosentino, A. Identifcation of pigments by multispectral imaging; a fowchart method. Heritage Science. 2014. Vol. 2(8). P. 1–12. P. DOI: 10.1186/2050-7445-2-8.
Balas, C., Epitropou, G., Tsapras, A., Hadjinicolaou, N. Hyperspectral imaging and spectral classification for pigment identification and mapping in paintings by El Greco and his workshop. Multimedia Tools and Applications. 2018. Vol. 77(8). P. 9737–9751. DOI:10.1007/s11042-017-5564-2.
Bechstedt, J. Distinction of green pigments from yellow mixed with blue and black using multispectral/multiband imagery. Proceedings from Transcending Boundaries: Integrated Approaches to Conservation — ICOM-CC 19th Triennial Conference (17–22 May 2021, Beijing). Beijing : ICOM-CC. 2021. P. 17–21.
Buzit-Tragni, C. Appendix I – Target for Fluorescence Photography / Buzit-Tragni, C. // The Use of Ultraviolet-Induced Visible Fluorescence for Examination of Photographs. Capstone Research Project, Advanced Residency Program in Photograph Conservation, Third Cycle 2003-2005. Rochester, NY : George Eastman House, Image Permanence Institute, 2005. P. 1–5.
McGlinchey Sexton, J., Messier, P., Chen, J. J. Development and testing of a fluorescence standard for documenting ultraviolet induced visible fluorescence. Proceedings from 42nd Annual American Institute for Conservation Meeting «Conscientious Conservation – Sustainable Choices in Collection Care ». San Francisco: American Institute for Conservation. 2014. p. 105–108..
McGlinchey Sexton, J., Messier, P. Permanence of the Target-UVTM and UV-GrayTM. 2015. Retrieved from http://docs.wixstatic.com/ugd/750e25_77a29ae0fb3a459b9fe83189272b9bf1.pdf
Fuster, L, Stols-Witlox, M., Picollo, M. UV-Vis Luminescence imaging techniques/Técnicas de imagen de luminiscencia UV-Vis. Vol. 1. València : Editorial Universitat Politècnica de València, 2020. 342 p.
Pozeilov, Y. Simple ultraviolet-induced visible fluorescence target or a low cost alternative to a spectralon. Proceedings from Archiving 2023. Springfield, USA : Society for Imaging Science and Technology, 2023. p. 116–120. DOI: 10.2352/issn.2168-3204.2023.20.1.25.
Warda, J. (ed.), Frey, F., Heller, D., Kushel, D., et al. The AIC guide to digital photography and conservation documentation. 3rd Edition. Washington, DC : American Institute for Conservation of Historic and Artistic Works. 2017. 223 p.
Edwards, G., Oey, M. (Eds.) Digital imaging workflow for treatment documentation. 3rd Edition. Conservation Division, Preservation Directorate Library of Congress, 2018. 201 p. Режим доступу: https://www.loc.gov/preservation/resources/ImageDoc/Docs/Digital%20Imaging%20Workflow.pdf.